Singular Value Decomposition in Dna Microarrays
نویسنده
چکیده
We show that the singular value decomposition with respect to a certain inner product in R gives the generalized singular value decomposition for two matrices with M columns and different sizes of rows, introduced recently to compare two sets of DNA microarrays of different organisms. 2000 Mathematical Subject Classification: 15A18, 92D10
منابع مشابه
Modified Laplace Decomposition Method for Singular IVPs in the second-Order Ordinary Differential Equations
In this paper, we use modified Laplace decomposition method to solving initial value problems (IVP) of the second order ordinary differential equations. Theproposed method can be applied to linear and nonlinearproblems
متن کاملRobust SVD Method for Missing Value Estimation of DNA Microarrays
A majority of DNA microarray datasets contain missing or corrupt values and it is critical to estimate these values accurately. These missing values are most often attributed to insufficient experimental resolution or the presence of foreign objects on the experimental slide’s surface. To improve existing missing value estimation algorithms, this paper introduces and investigates the scalable s...
متن کاملSingular value decomposition of large random matrices (for two-way classification of microarrays)
Asymptotic behavior of the singular value decomposition (SVD) of blown up matrices and normalized blown up contingency tables exposed to Wigner-noise is investigated. It is proved that such an m×n matrix almost surely has a constant number of large singular values (of order √ mn), while the rest of the singular values are of order √ m + n as m,n → ∞. Concentration results of Alon at al. for the...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004